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Abstract

The process of opsonization is one of the most important biological barriers to controlled drug delivery. Injectable polymeric nanoparticle carriers
have the ability to revolutionize disease treatment via spatially and temporally controlled drug delivery. However, opsonin proteins present in the
blood serum quickly bind to conventional non-stealth nanoparticles, allowing macrophages of the mononuclear phagocytic system (MPS) to easily
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ecognize and remove these drug delivery devices before they can perform their designed therapeutic function. To address these limital
ethods have been developed to mask or camouflage nanoparticles from the MPS. Of these methods, the most preferred is the adsorpt
f poly(ethylene glycol) (PEG) to the surface of nanoparticles. Addition of PEG and PEG-containing copolymers to the surface of nan
esults in an increase in the blood circulation half-life of the particles by several orders of magnitude. This method creates a hydrophilicve
ayer around the nanoparticles that is able to repel the absorption of opsonin proteins via steric repulsion forces, thereby blocking ande
rst step in the opsonization process.
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. Introduction

Through spatial and temporal controlled drug delivery,
njectable nanoparticle carriers have the ability to revolutionize
isease treatment. Spatially localizing the release of toxic and
ther potent drugs only at specific therapeutic sites can lower

he overall systemic dose and damage that these drugs would
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otherwise produce. Temporally controlling the release of a
can also help decrease unwanted side effects that might
wise occur due to the natural circadian fluctuations of chem
levels throughout the body (Hermida et al., 2001). The overal
benefit of these improvements in disease treatment wou
an increase in patient compliance and quality of life. In o
for a drug delivery device to achieve these desired bene
must be present in the bloodstream long enough to rea
recognize its therapeutic site of action. However, the opso
tion or removal of nanoparticulate drug carriers from the b
378-5173/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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by the mononuclear phagocytic system (MPS), also known as
the reticuloendothelial system (RES), is a major obstacle to the
realization of these goals.

The macrophages of the MPS have the ability to remove
unprotected nanoparticles from the bloodstream within sec-
onds of intravenous administration, rendering them ineffective
as site-specific drug delivery devices (Gref et al., 1994). These
macrophages, which are typically Kupffer cells, or macrophages
of the liver, cannot directly identify the nanoparticles them-
selves, but rather recognize specific opsonin proteins bound to
the surface of the particles (Frank and Fries, 1991). Broadly
speaking, opsonins are any blood serum component that aids
in the process of phagocytic recognition, but complement pro-
teins such as C3, C4, and C5 and immunoglobulins are typically
the most common. Several methods of camouflaging or mask-
ing nanoparticles have been developed, which allow them to
temporarily bypass recognition by the MPS and increase their
blood circulation half-life (Illum and Davis, 1984; Gref et al.,
1994; Kaul and Amiji, 2002). Many of these systems make use
of surface treatments that interfere with the binding of opsonin
proteins to the particle surface as a means of imparting stealth,
or MPS-avoidance characteristics to nanoparticles. This review
focuses on those systems that utilize poly(ethylene glycol) and
PEG-containing surface treatments because these systems seem
to hold the most promise and show the lowest occurrence of
harmful effects in vivo.
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tain diseases which are easily controlled by phagocytosis in non-
C3 deficient animal models (Singer et al., 1994). The opsonins,
which are present throughout the blood, are thought to come into
contact with injected polymeric nanoparticles typically by ran-
dom Brownian motion. However, once sufficiently close to the
surface of a particle, any of several attractive forces including
van der Walls, electrostatic, ionic, hydrophobic/hydrophilic, and
others can be involved in the binding of opsonins to the surface
of the nanoparticle.

After opsonization has occurred, the next step in the clearance
process is the attachment of the phagocyte to the nanoparticle
via surface bound opsonins. Without the presence of surface
bound or adsorbed opsonin proteins, the phagocytes will typ-
ically not be able to bind or recognize the foreign particles.
One method of attachment occurs when the bound opsonin pro-
teins undergo conformational changes from an inactive protein
present in the blood serum to an activated protein structure
that can be recognized by phagocytes. Phagocytic cell surfaces
contain specialized receptors that interact with the modified con-
formation of these various opsonins thus alerting them to the
presence of a foreign material.

A second method of phagocyte attachment is the non-specific
adherence of phagocytes to surface adsorbed blood serum pro-
teins which can result in the stimulation of phagocytosis as well
(Frank and Fries, 1991). This process is typically due to the asso-
ciation of opsonin proteins with a more hydrophobic particle
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. Opsonization and phagocytosis

Opsonization is the process by which a foreign organis
article becomes covered with opsonin proteins, thereby m

t more visible to phagocytic cells. After opsonization, phago
osis can occur, which is the engulfing and eventual destru
r removal of foreign materials from the bloodstream. Toge

hese two processes form the main clearance mechanism
emoval of undesirable components larger than the renal th
ld limit from the blood. In the case of polymeric nanopartic
hich cannot normally be destroyed by the phagocytes, se

ration in the MPS organs typically occurs. If the polyme
anoparticle is non-biodegradable, then accumulation of p
les in these organs, most commonly the liver and spleen
ccur leading to toxicity and other negative side effects (Illum
t al., 1986; Peracchia et al., 1999a; Plard and Bazile, 199).

Opsonization typically takes place in the blood circula
nd can take anywhere from a matter of seconds to many

o complete. The exact mechanism through which this pro
s activated is very complicated and not yet full underst
ut the important components involved are, for the most
ell known. Immunoglobulins and components of the com
ent system such as C3, C4, and C5 are known to be com
psonins as well as other blood serum proteins such as lam
bronectin, C-reactive protein, type I collagen and many ot
Frank and Fries, 1991; Johnson, 2004). The importance of thes
roteins in the clearance process has been indirectly de
trated in many in vivo animal studies of inherited and indu
3 deficient animal models. For instance, research has s

hat these animal models are often times more susceptible
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urface. The third significant method of phagocyte attach
s complement activation. The complement system can be
ated by one of several mechanisms including the clas
lternative, and lectin pathway. The exact details of these m
nisms are beyond the scope of this review, but several exc
ources are available on this subject (Frank and Fries, 199
inger et al., 1994; Morgan, 1995; Johnson, 2004). Regardles
f the pathway of complement activation, the final result is
inding and phagocytosis of the foreign particle by the mon
lear phagocytes.

The third and final step in the clearance process is the i
ion of foreign materials by phagocytes. This step in the pro
ypically involves the endocytosis of the particle or fore
aterial by a phagocyte. Following endocytosis of the

icle, the phagocytes will begin to secret enzymes and
xidative-reactive chemical factors, such as superoxides,
alide molecules, nitric oxide, and hydrogen peroxide, to b
own the phagocytosed material (Mitchell, 2004). Unfortu-
ately, most non-biodegradable polymeric nanoparticles ca
e degraded significantly by this process and, depending on
elative size and molecular weight, will either be removed by
enal system or sequestered and stored in one of the MPS o
s a first approximation, removal by the renal system oc
nly for molecules with a molecular weight of around 5000

ess, but can be as high as 100,000 for more dense pol
uch as dendrimers. Therefore, non-biodegradable particle
egradation molecules with a molecular weight higher

he renal threshold, typically become sequestered in the
rgans. The final biodistribution of this sequestration dep
n several factors and is discussed in more detail in the b

ribution and pharmacokinetics section of this paper.
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Since the initial opsonization of particles is so critical to the
process of phagocytic recognition and clearance from the blood-
stream, most research in the area of stealth drug delivery has
focused on trying to stop or block this step of the process. There
are no absolute rules or methods available to completely and
effectively block the opsonization of particles, but research over
the last 30 years has found some trends and methods that can
be effective at slowing this process, thus increasing the blood
circulation half-life and effectiveness of stealth devices. As a
general rule, the opsonization of hydrophobic particles, as com-
pared to hydrophilic particles, has been shown to occur more
quickly due the enhanced adsorbability of blood serum proteins
on these surfaces (Carstensen et al., 1992; Muller et al., 1992;
Norman et al., 1992).

A correlation between surface charge and opsonization has
also been demonstrated in vitro, with research showing that neu-
trally charged particles have a much lower opsonization rate than
charged particles (Roser et al., 1998). Therefore, one widely used
method to slow opsonization is the use of surface adsorbed or
grafted shielding groups which can block the electrostatic and
hydrophobic interactions that help opsonins bind to particle sur-
faces. These groups tend to be long hydrophilic polymer chains
and non-ionic surfactants. Some examples of polymer systems
that have been tried in the literature as shielding groups include
polysaccharides, polyacrylamide, poly(vinyl alcohol), poly(N-
vinyl-2-pyrrolidone), PEG, and PEG-containing copolymers
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PEG chains are always available even after the degradation of
surface layers. The purpose of these PEG chains is to create a bar-
rier layer to block the adhesion of opsonins present in the blood
serum, so that the particles can remain camouflaged or invisible
to phagocytic cells. Experimental research using freeze-fracture
transmission electron microscopy (TEM) has even been able to
demonstrate visually the protein rejecting capabilities of PEGy-
lated surfaces (Peracchia et al., 1999b).

Many different types of PEG-containing polymers have been
tested for their ability to impart stealth characteristic to poly-
meric nanoparticles. The basic repeating units of poly(ethylene
glycol) and poly(propylene glycol) are shown below. Because of
the chemical structure of the repeating units, these polymers are
also known as poly(ethylene oxide) (PEO) and poly(propylene
oxide) (PPO).

Tables 1 and 2contain a representative listing of PEG-
containing polymers for adsorbed and covalently attached sur-
face coatings, (adapted fromStorm et al., (1995)). FromTable 1,
it is evident that the vast majority of research in PEG surface
coatings has involved surface adsorbed poloxamers and polax-
amines.
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uch as poloxamers, poloxamines, polysorbates, and PEG
ymers. Of all the polymers tested to date, the most effective

ost commonly used are the PEG and PEG-containing co
ers. These polymers are typically very flexible and hig
ydrophilic, which can help shield even hydrophobic or cha
articles from blood proteins. They are also typically cha
eutral, which lessens the effect of electrostatic interaction

. PEGylation

As previously mentioned, the preferred method of imp
ng stealth, or sterically stabilized properties to nanoparticl
hrough the PEGylation of these particles. PEGylation sim
efers to the decoration of a particle surface by the coval
rafting, entrapping, or adsorbing of PEG chains. Also, in
ase of biodegradable nanoparticles, PEG chains can be in
ated as copolymers throughout the particle so that some su
o-
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These polymers are amphiphilic block copolymers con
ng of blocks of ethylene oxide (EO) and propylene oxide (

onomer units, which are typically formed by anionic polym
zation.

The important difference between these structures is
dditional methyl group of the PO unit, which makes it m
ydrophobic, while the EO unit is more hydrophilic. Therefo

he hydrophobic sections of the polymer which contain PO u
an be used to adsorb and anchor the surfactant molec
he nanoparticle surface, while the hydrophilic EO contai
olymers or PEG sections can extend into solution and s

he surface of the particle. This method has the advanta
eing fairly simple to achieve and can impart increased M
voidance characteristics to the particles. Conversely, it ha
raw back that surface adsorbed PEG polymers can also d

eaving holes in surface coverage where opsonins can bindNeal
t al., 1998). The situation is even worse when PEG polym
re surface adsorbed on biodegradable polymer nanopar
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Table 1
Studies of the opsonization of polymeric nanoparticles with surface adsorbed PEG and PEG containing polymer layers

Nanoparticle Surface coating Reference

Poly(butyl 2-cyanoacrylate) (PBCA) Poloxamer-338 Douglas et al. (1986)
Poloxamine-908 Douglas et al. (1986)

Poly(�-caprolactone) (PCL) PEG (6000, 20,000) Leroux et al. (1995)
Poloxamer-407 Jackson et al. (2000)

Poly(�-hydroxybutyrate) (PHB) Poloxamer (338, 407) Muller and Wallis (1993)
Poloxamine-908 Muller and Wallis (1993)

Poly(lactic acid) (PLA) PEG (6, 20 kDa) De Jaeghere et al. (2000)
Poloxamer-188 Vittaz et al. (1996)
Poloxamer-338 Muller and Wallis (1993)
Poloxamer-407 Muller and Wallis (1993); Jackson et al. (2000)
Poloxamine-908 Muller and Wallis (1993)

Poly(lactic-co-glycolic acid) (PLGA) PEG (2000 or 5000)-b-PLA Stolnik et al. (1994)
Poloxamer (184, 188, 388) Muller and Wallis (1993)
Poloxamer-407 Muller and Wallis (1993); Dunn et al. (1997); Neal et al. (1998);

Park et al. (2003)
Poloxamine-904 Muller and Wallis (1993); Dunn et al. (1997); Neal et al. (1998)
Poloxamine-908 Stolnik et al. (1994); Dunn et al. (1997)

Poly(lactic acid):
poly(ethylene-co-vinyl acetate)
(PLA:EVA) 50:50

Poloxamer-407 Jackson et al. (2000)

Poly(methyl methacrylate) (PMMA) Poloxamer-184 Troster et al. (1990)
Poloxamer-188 Leu et al. (1984); Troster et al. (1990)
Poloxamer-338 Troster et al. (1990); Troster and Kreuter (1992)
Poloxamer-407 Troster et al. (1990); Jackson et al. (2000)
Poloxamine-904 Troster and Kreuter (1992)
Poloxamine-908 Troster et al. (1990); Troster and Kreuter (1992); Troster et al.

(1992)
Poloxamine-1508 Troster and Kreuter (1992); Troster et al. (1992)
Polysorbate (20, 60, 80) Troster et al. (1990)
Polyxyethylene (23) lauryl ether (Brij 35) Troster et al. (1990); Troster and Kreuter (1992)

Polystyrene (PS) PEG (2000) Harper et al. (1991)
PEG (22,000) Tan et al. (1993)
PEG (550)-b-BSA (Bovine Serum Albumin) Moghimi (2002)
PEG (5000)-b-BSA (Bovine Serum Albumin) Gbadamosi et al. (2002); Moghimi (2002)
PEG (5000)-b-IgG (Rat) Moghimi (2002)
PEG (2000 or 5000)-b-PLA Stolnik et al. (1994)
Poloxamer-184 Illum et al. (1987b); Blunk et al. (1993); Muller and Wallis (1993)
Poloxamer-188 Illum et al. (1986, 1987b); Blunk et al. (1993); Muller and Wallis

(1993)
Poloxamer-235 Norman et al. (1992)
Poloxamer-237 Illum et al. (1987b); O’Mullane et al. (1990); Norman et al.

(1992)
Poloxamer-238 Illum et al. (1987b); Harper et al. (1991); Norman et al. (1992)
Poloxamer-338 Illum and Davis (1983, 1984); Illum et al. (1986, 1987b);

O’Mullane et al. (1990); Watrous-Peltier et al. (1992); Muller
and Wallis (1993); Tan et al. (1993)

Poloxamer (401, 402) Moghimi (2003)
Poloxamer-407 Davis and Illum (1988); Moghimi et al. (1991); Norman et al.

(1992); Porter et al. (1992a,b); Blunk et al. (1993); Muller and
Wallis (1993); Moghimi and Gray (1997); Neal et al. (1998);
Stolnik et al. (2001); Moghimi (2003)

Poloxamine-904 Muir et al. (1991)
Poloxamine-908 Illum et al. (1987a,b); Davis and Illum (1988); Moghimi et al.

(1991); Muir et al. (1991); Norman et al. (1992); Watrous-Peltier
et al. (1992); Moghimi et al. (1993a,c); Muller and Wallis (1993);
Tan et al. (1993); Dunn et al. (1994); Stolnik et al. (1994);
Moghimi and Gray (1997); Neal et al. (1998); Moghimi et al.
(2003)

Poloxamine-1508 Muir et al. (1991); Tan et al. (1993)
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Table 2
Studies of the opsonization of polymeric nanoparticles with covalently bonded or entangled surface PEG and PEG containing polymer layers

Nanoparticle Surface coating Reference

Albumin (BSA) PEG (1750) Ayhan et al. (2003)
Gelatin (Type-B) PEG (5000) Kaul and Amiji, 2002 (2004)
Polyalkylcyanoacrylate (PACA) PEG (2000)-b-polyhexa decylcyanoacrylate Peracchia et al. (1999a,b)

Poly(�-caprolactone) (PCL) PEG (5000)-b-PCL Gref et al. (1994, 2000); Mosqueira et
al. (2001); Ameller et al. (2003a)

PEG (12,000, 20,000)-b-PCL Gref et al. (1994)
Poloxamer-188 Chawla and Amiji (2002); Shenoy and

Amiji (2005)
Poloxamer-338 Shenoy and Amiji (2005)
Poloxamer (188, 237, 238, 407)-b-PCL Ha et al. (1999)

Poly(isobutyl 2-cyanoacrylate)
(PIBCA)

PEG (4500)-PIBCA Peracchia et al. (1997)

Poly(lactic acid) (PLA) PEG (2000)-b-PLA Bazile et al. (1995); Vittaz et al.
(1996); De Jaeghere et al. (2000); Gref
et al. (2000)

PEG (5000)-b-PLA Bazile et al. (1995); De Jaeghere et al.
(2000); Gref et al. (2000); Mosqueira
et al. (2001); Ameller et al. (2003a,b)

PEG (10,000 or 15,000)-b-PLA Gref et al. (2000)
PEG (20,000)-b-PLA Gref et al. (2000); Zambaux et al.

(2000); Mosqueira et al. (2001);
Ameller et al. (2003a,b)

PLA-b-PEG (6000 or 20,000)-b-PLA De Jaeghere et al. (2000)
Poloxamer-188 Bazile et al. (1995)

Poly(lactic-co-glycolic acid) (PLGA) PEG (2000 or 5000)-b-PLA Stolnik et al. (1994)
PEG (5000)-b-PLGA Gref et al. (1994, 2000); Mosqueira

et al. (2001); Panagi et al. (2001);
Ameller et al. (2003a); Avgoustakis et
al. (2003)

PEG (12,000 or 20,000)-b-PLGA Gref et al. (1994)
Poloxamer-407 Dunn et al., (1997)
Poloxamine-904 Dunn et al. (1997)
Poloxamine-908 Stolnik et al. (1994); Dunn et al.

(1997)

Polystyrene (PS) PEG (1500)-PS Meng et al. (2004b)
PEG (3400 or 5000)-PS Meng et al. (2004a,b)
PEG (2000)-PS Harper et al. (1991); Dunn et al. (1994)
PS NH CH2 (CHOH)2 PEG (linear 250,
500, 1000, 1500, 4000, 19,000)

Bergstrom et al. (1994)

PS NH CH2 (CHOH)2 PEG (branched
1000, 1700, 6000)

Bergstrom et al. (1994)

In this case, not only can desorption occur, but biodegradation
of the particle can also increase the loss of surface bound PEG
moieties. Because of these issues, several different methods have
been developed in the literature, seeTable 2, to covalently attach
PEG chains to the surface of nanoparticles. Some research has
directly shown that particles with covalently bound PEG chains
achieve longer blood circulation half-lives than similar particles
with only surface adsorbed PEG (Harper et al., 1991; Bazile et
al., 1995). Nevertheless, there are some disadvantages to this
method as well. It is sometimes hard to ensure that covalently
binding of the PEG chains occurs at the surface and not in the
bulk of the material, if surface coverage is the goal. Also, as
a result of this, it can be much more difficult to control and
optimize the surface coverage density and conformation. On the
other hand, the covalent bonding of PEG chains throughout the

particle maybe preferred for biodegradable particles, due to the
availability of surface exposed PEG chains during the entire
degradation and erosion process.

To create these types of nanoparticle systems, most
researchers use a copolymer of PEG with another biodegradable
polymer, such as poly(lactic acid), poly(lactic acid-co-glycolic
acid), or poly(alkylcyanoacrylates). In this case, a surface PEG
layer is typically created by addition of PEG containing copoly-
mers to the reaction mixture prior to polymerization. Since these
reactions typically employ an emulsion, precipitation or disper-
sion polymerization in aqueous media, the PEG portion of the
copolymer is able to orient itself within the non-reacting water
phase, while the biodegradable portion of the copolymer is cova-
lently bonded or physically entangled inside the polymerizing
nanoparticle matrix. Alternatively, PEG moieties might also be
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covalently bonded to fully formed nanoparticles after polymer-
ization by various “living” polymerization techniques, such as
ATRP and iniferter, or through traditional surface functional
group chemistry. However, their has only been a small number
of stealth nanoparticle systems studied that utilize these more
difficult methods of PEGylation (Bergstrom et al., 1994; Dunn
et al., 1994).

Several theories have been proposed to explain the appar-
ent protein resistance and stealth characteristics imparted to
materials by the incorporation of surface bound PEG. Alterna-
tively, some theories have implied that PEGylated nanoparticles,
added in excess, simply overload the opsonization and clear-
ance systems of the body, thereby giving the particles the false
appearance of stealth properties (Moghimi and Szebeni, 2003).
However, the most widely accepted of these theories is one based
on the interactions between proteins and PEGylated surfaces,
which supports the hypothesis that PEGylation can add pro-
tein resistant (i.e. opsonization resistant) properties to materials
(Jeon et al., 1991).

This theory makes the argument that the hydrophilic and flex-
ible nature of the surface PEG chains allows them to take on a
more extended conformation when free in solution. Therefore,
when opsonins and other proteins are attracted to the surface of
the particle, by van der Waals and other forces, they encounter the
extended surface PEG chains and begin to compress them. This
compression then forces the PEG chains into a more condensed
a tion
c ough,
c force
b rtant
t s to
o imum
l can
v con-
t ther
f nsity,
a

cular
w PS-
a ely
d has
b 2000,
t lso
i flex-
i x
e
t nfor-
m alth
c inter-
r hain
h t is
t will
b rface
c whe
o . O
t rang
o en

Fig. 1. Schematic diagrams of PEG configurations on the upper hemisphere of
a polymeric nanoparticle. In (a), the low surface coverage of PEG chains leads
to the “mushroom” configuration where most of the chains are located closer to
the particles surface. In (b), the high surface coverage and lack of mobility of
the PEG chains leads to the “brush” configuration where most of the chains are
extended away from the surface.

exhibit a semi-linear or “brush” configuration. Although a high
surface coverage ensures that the entire surface of nanoparticle
is covered, this method also decreases the mobility of the PEG
chains and thus decreases the steric hindrance properties of the
PEG layer (Storm et al., 1995). A 3D schematic diagram of the
PEG “brush” and “mushroom” configurations is illustrated in
Fig. 1.

Therefore, the optimal surface coverage is located some-
where in between the “mushroom” and “brush” configurations,
where most chains are in a slightly constricted configuration,
but are present at a high enough density to ensure that no gaps
or spaces on the particle surface are left uncovered. As a gen-
eral guideline, researchers have pointed to a minimum effective
hydrodynamic layer thickness of roughly 5% of the particle’s
diameter, or one that is greater than twice the hydrodynamic
radius of the polymer coil in its dilution solution conformation
(Stolnik et al., 1995; Storm et al., 1995). It should also be noted
that this analysis of surface coverage was developed primarily
for solid surfaces, which is not always the case in drug delivery
systems. For instance, when the surface PEG chains of swollen
hydrogel materials are compressed, there is a finite probability
that these chains will penetrate back into the hydrogel matrix
itself, instead of being compressed into a higher energy confor-
mation, thereby making the surface coating layer less effective
(Huang et al., 2001). Currently, this effect has not been fully
studied in stealth nanoparticles and should therefore be taken
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. Biodistribution and pharmacokinetics

Typically once a polymeric nanoparticle is opsonized
emoved from the bloodstream, it is sequestered in one o
PS organs. In the case of “naked” nanoparticles, or nan

icles that have not been PEGylated and lack stealth prope
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sequestration in the MPS organs is very rapid, typically a mat-
ter of minutes, and usually concentrates in the liver and spleen
(Illum et al., 1987a; Gref et al., 1995; Panagi et al., 2001). How-
ever, for PEGylated stealth nanoparticles the speed of clearance
and final biodistribution is dependant on many factors.

Research has shown that particle size plays a key role in
the final biodistribution and blood clearance of stealth particles.
As discussed earlier, molecules that have a molecular weight
less than 5000, or even higher for dense polymers such as den-
drimers, can be removed from the body via the renal system.
For large molecules and particles that can not be removed by the
renal system, research has shown that particles with hydrody-
namic radii of over 200 nm typically exhibit a more rapid rate of
clearance than particles with radii under 200 nm, regardless of
whether they are PEGylated or not (Moghimi et al., 1993b). In
other words, a 250 nm PEGylated nanoparticle would be cleared
from the blood stream much more rapidly than a 70 nm PEGy-
lated particle. Likewise a 250 nm “naked” nanoparticle would be
removed more quickly than a 70 nm “naked” nanoparticle, but
both “naked” nanoparticles and the 250 nm PEGylated particle
would be removed orders of magnitude more quickly than the
70 nm PEGylated nanoparticle. Besides blood clearance rate, the
final biodistribution is also affected by particle size. In the case
of PEGylated nanoparticles, a hydrodynamic radius of less than
150 nm was shown to produce an increased uptake of particles
in the bone marrow of rabbits, where as particles of 250 nm in
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ing data in the literature, and due to the lack of a comprehensive
study of these factors across various animal models, intra- and
inter-species variations in animal models, and the variability
observed in the raw materials and polymers used to perform
these studies, very few definite trends can be developed con-
cerning how these parameters affect the final biodistribution of
sequestered particles (Porter et al., 1992a; Hunter and Moghimi,
2002).

Despite these discrepancies, there seems to be at least two
general trends that are consistent throughout most biodistribu-
tion studies. First, most researchers found that the use of larger
molecular weight PEG polymers led to longer blood circulation
half-lives for the particles in vivo (Gref et al., 1995). The second
common trend showed that uncoated nanoparticles concentrated
most heavily in the liver and spleen, but with the addition of
PEGylation this final biodistribution was shift toward the spleen.
One specific example showed that 24 h after injection 40% of
PEGylated particles were found in the liver, while 90% were
found in the liver after only 3 min for “naked” particles. On the
other hand, after 60 min of blood circulation the concentration
of PEGylated particles in the spleen was 12% while it was only
2% for “naked” particles (Peracchia et al., 1999a).

Several different methods are available to study the final
biodistribution and clearance rates of these particles both in
vivo and in vitro. In vitro methods typically make use of tech-
niques such as flow cytometry and cell-associated fluorescence
m 00
T ono-
c , and
n al.,
2
s take
i m
h 92;
T
t into
s Then
e s and
h using
a tions
o stri-
b imal
m

5

dy of
s clear
p area
o nents
i by
w with
s lack
o le cell
l sys-
t s and
p veral
iameter where mostly sequestered in the spleen and liver
nly a small fraction of uptake by the bone marrow (Porter e
l., 1992b).

Researchers have hypothesized that differences in the u
nd biodistribution of stealth particles indicates the pres
f opsonins that are specific to only a certain type of ph
yte. For instance,Moghimi and Patel (1988)hypothesized tha
n increased accumulation of cholesterol-rich liposomes i
pleen was due to the presence of opsonins specific to s
hagocytes, which exhibited stronger binding on cholest
ich surfaces than Kupffer cell specific opsonins. Also, opso
pecific to the Kupffer cells may have large binding regi
hat require the presence of larger particles in order to ac
inding, thus leading to the preferential sequestration of
articles in the liver. Another possible explanation is that s
ependent biodistribution might have more to do with a sim
ltering effect, whereby larger particles are removed by
pleen and liver more rapidly while smaller particles are dire
o the bone marrow (Moghimi et al., 1993b). Though the exac
eason for these size dependencies has not yet been fully
ated.

Besides particle size, another important factor in deter
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he typical cell lines used for these studies are human m
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000; Jaulin et al., 2000; Zambaux et al., 2000). For in vivo
tudies, the most popular methods for tracking particle up
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. Conclusions

The summarized work above demonstrates that the stu
tealth nanoparticles and their opsonization by the mononu
hagocytic system remains a very active and developing
f research. Although the proteins and blood serum compo

nvolved in this process are fairly well known, the mechanism
hich they activate specific cellular responses and interact
tealth nanoparticles is still not fully understood. Also, the
f a comprehensive study of these responses across multip

ines and animal models and the inherent variability in these
ems has hindered our understanding of these mechanism
roduced conflicting results. Furthermore, there are still se
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major factors that have not been adequately addressed in this area
of research. They include the effect of molecular weight polydis-
persity and particle size distribution in polymeric systems and
intermediate polymer degradation products on stealth proper-
ties and biocompatibility. Until comprehensive and systematic
studies can be conducted to account for all of these critical fac-
tors, there will be some difficulty in achieving truly exceptional
stealth properties in polymeric nanoparticle systems. However,
despite these issues, great strides have been made over the past
several decades at improving the overall MPS-avoidance charac-
teristics and stealth properties of PEGylated polymeric carriers.
While this and other research has led to exciting discoveries in
the field of stealth nanoparticles, a significant amount of work
remains before these systems can be considered safe for use in
humans. Hopefully, with more characterization and understand-
ing of the factors that affect stealth materials, long circulating
stealth nanoparticle drug delivery in humans will soon become
a reality.
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